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Abstract:  In this study, the multiple imputation and maximum likelihood methods of imputing missing data in a randomised 

complete block design are compared. The aim is to seek for a more efficient technique for imputing missing data. 

The Multiple Imputation (MI) method involves imputing missing values repeatedly in order to account for 

variability due to imputations, while the Maximum Likelihood (ML) method (EM algorithm) first takes the 

estimate of variances, covariances and means from listwise deletion. These estimates are then used to solve for 

regression coefficients and the estimation of missing data. Data was collected from the Department of Animal 

Health and Production Technology, NVRI Vom. The data was that of an experiment on the effect of temperature 

and storage length on protein content of table eggs. The MI and ML methods were compared at levels 4, 5, 10 and 

15 missing observations at m=20, 30 and 40 imputations using SPSS version 25 for the analysis. It was observed 

that the ML method performed better than the MI method at four (4) missing observations, except for m=40 

imputation. Apart from that situation, the MI method performed better than the ML in other levels of missing 

observations. It was concluded that the ML is more efficient when the number of missing observations are few, 

although the MI can perform equally efficiently for the same situation when the number of imputation is 

excessively increased. The MI method performs excellently better than the ML method when the number of 

missing observations are more than 10% of the entire number of observations. 
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Introduction 

Collecting, analysing and drawing conclusions or inferences 

from data are central to research in many fields of life. 

Unfortunately, for quite a number of reasons, it is hardly 

possible to collect all the intended data. Incomplete data or 

missing values has become a common phenomenon in most 

fields of life and this has become a common obstacle for a 

balanced data analysis. Some of the reasons for missingness 

of data include; failure to answer a survey question, drop-out, 

planned missing values, intermittent measurements, latent 

variables, equipment malfunctions, to mention just a few. In 

experimental work, it sometimes happens that the results of 

one or more observations are lost, animals may become sick 

or die during the process of experimentation, field plots 

maybe ravaged by fire or by some pest, or labelling maybe 

laid wrongly. No matter the amount of care taken, missing 

observations can still find its way into a data set. 

Missing data is capable of rendering the analysis unbalanced 

and in some instances rendering it unfeasible. Handling 

missing values is very critical to drawing conclusions for a 

parameter of interest. Many methods of handling missing 

values inappropriately fail to account for the uncertainty due 

to missing values. This failure can lead to biased estimates 

and loss of efficiency. Most missing value techniques fail to 

identify the nature of missingness. These techniques assume 

data are missing at random, which is not usually the case. 

Data could be missing at random (MAR), missing completely 

at random (MCAR) or missing not at random (MNAR). The 

nature of missingness has a role to play in estimating the 

missing observation. It is only appropriate to ignore the 

process that causes missing data when the sampling 

distribution inferences about the parameter indicates that the 

missing data are missing at random and the observed data are 

observed at random, but generally, inferences on missing data 

are conditioned on the observed pattern of missingness 

(Rubin, 1976). 

The MI method accounts for variability of the incomplete 

data. The method involves replacing the missing data set by 

more than one plausible set of values and then approximately 

combining the complete data estimates using specific 

combining rules. The method involves generating completed 

datasets and then the computation of the multiple-imputed 

values. The estimates of missing data are obtained by 

simulation of random draws from the distribution of the 

missing variables given the observed variables.  

A lot of studies have investigated conditions under which 

missing data techniques are able to reduce bias and increase 

the efficiency and the sensitivity of the statistical analysis. 

Until the late 1980s, deletion methods (i.e., listwise and 

pairwise deletion) dominated the analysis of missing data. 

However, with later developments in statistical software, ML 

estimation methods have become readily available for 

handling missing data in unbalanced designs (Shin et al., 

2017). There are various methods of estimating missing 

values, some of the most commonly used methods are; 

complete cases, available cases, single value imputation, and 

more recent model-based methods, maximum likelihood for 

multivariate normal data, and multiple imputation (Pigott, 

2000).  

Most of the methods mentioned above, apart from the model 

based methods, do not take care of the pattern of missingness 

of an observation. The pattern of missingness of an 

observation has a lot to do with predicting the missing value 

(Rubin, 1976). The pattern of missingness and missingness 

mechanism has a lot to do with the validity of inferences 

drawn from incomplete data. Both deletion methods always 

require MCAR conditions. In addition, for listwise deletion, 

there are two MNAR special cases, regression imputation and 

stochastic regression imputation, which can yield unbiased 

estimates under MAR. For efficiency and consistency, the 

model needs to be correctly specified. LOCF is incapable of 

providing consistent estimates, even under MCAR. Listwise 

deletion produces standard errors that are correct for the 

subset of complete cases, but in general too large for the entire 

dataset. Calculation of standard errors under pairwise deletion 

is complicated. The standard errors after single imputation are 

too small since the standard calculations make no distinction 

between the observed data and the imputed data. Though 

correction factors for some situations have been developed 

according to Schaffer and Schenker (2000), but a more 
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convenient solution is multiple imputation (Buuren, 2012). It 

is in this light that this study seeks to explore the use of MI 

methods. 

In this study, a comparison of the MI method with the 

maximum likelihood (ML) is undertaken. This is necessary 

because investigators have continued to argue for and against 

which method, between ML and MI is most appropriate in 

different situations. Some others have equally said the two 

methods are just as equally efficient (Graham, 2009). Allison 

(2012), reported that the two approaches that have good 

statistical assumptions are the maximum likelihood estimation 

and the multiple imputation technique. But he also argued that 

the maximum likelihood method is a better technique than the 

method of multiple imputation. This requires further 

investigation, especially with RCBD. There is therefore the 

need to compare the MI method to the ML method in order to 

determine which of them produces an efficient estimate when 

applied in an agricultural setting with RCBD layout.  

The aim of this work is therefore to compare the multiple 

imputation and the maximum likelihood methods for use in a 

randomised complete block design (RCBD)with missing 

observations.  

The objectives of this work is to determine a suitable 

imputation method for RCBD with replication, to access the 

precision of imputed value based on the adopted technique 

and to find the relative efficiency of the MI method in 

comparison to the ML methods. 

 

Materials and Method 

The multiple imputation method 

The multiple imputation method which was introduced by 

Donald Rubin in 1987 is currently the prevailing method of 

estimating missing values (Garson, 2015). Buuren (2012) 

reported that it is almost the universally accepted method for 

estimating missing data nowadays and it also serve as a 

benchmark against which newer methods are being compared. 

In this technique, instead of filling the missing value with a 

single value, the missing value is replaced with a set of 

possible values. The idea behind this method is to fill in m 

plausible values for the missing data several times to account 

for model uncertainty. The reasoning behind the m 

replications of imputed values is to create m complete data 

sets each of which is to be analysed by standard complete data 

methods. To create these m plausible values, a regression 

model needs to be identified, this model would be used to 

create imputes based on other variables (predictors) in the data 

set. Here, m different but similar regression models would be 

identified to give different values that would be imputed to 

form m complete data sets that would each be analysed using 

standard procedures. This method retains the advantage of 

single imputation by using a complete data set and thereby 

allowing standard statistical procedure to be used for the 

analysis. Also by allowing more than one value on a missing 

variable to be estimated, MI corrects for sampling variability 

and thus improves upon the single imputation techniques that 

uses only a single value. The imputed m values on the variable 

of interest can therefore be aggregated to produce inferential 

results. In addition, random error in the imputation process 

yields approximately unbiased estimates of all parameters, 

which no deterministic method can perform. Also, repeated 

imputation allows for good estimates of the standard errors. 

Rubin (1987) argued that an important limitation of single 

imputation methods is that standard variance formulas applied 

to filled-in data systematically underestimated the variance of 

estimates, thus he proposed multiple imputation. In this 

method, the first step is to specify one encompassing 

multivariate model for the entire data set. There are four 

different types of multivariate complete data models, which 

are as follows: (i) normal model, which perform imputation 

under a multivariate normal distribution; (ii) log linear model, 

which has been traditionally used by social scientists to 

describe associations among variables in cross-classified data; 

(iii) general location model, which combines a log-linear 

model for the categorical variables with multivariate normal 

regression model for the continuous variables, and (iv) two 

level linear regression model, which is commonly applied to 

multi-level data. The chosen imputation model should be 

compatible with the subsequent analysis or to be precise, the 

model should be flexible enough to preserve the relationships 

among variables that will be the focal point of later analysis. 

Multiple imputations are similar to single imputation in that it 

imputes a set of likely values from a distribution for each 

missing variable (Yarandi, 2014). The normal model 

described as the best by Graham (2012), is the most 

implemented of all the models and it can handle a wide array 

of analytic problems. The normal model estimates without 

bias for, means, variances, covariances, and related quantities. 

But it does not give unbiased estimates for proportional 

estimations. Since the observed values are a random sample 

from the population, we can obtain consistent estimates of the 

mean and variance from the observed values alone, and use 

those estimates to impute the missing values with random 

draws from a normal distribution. We then analyze the mix of 

imputed and observed values as though it were complete. 

Analysis with MI is a three-step process, firstly, one imputes 

the data, and generating m imputed data sets. With each data 

set, a different imputed value replaces each missing value. 

Early writers suggested that very few imputed data sets were 

required. However, more recent work has suggested that more 

imputations (e.g., m= 20 to 40 or more) are required to 

achieve the statistical power of equivalent with ML 

procedures (Graham, 2012). Though, Rubin and Schenker 

(1986) demonstrated that even in extreme cases where the 

proportion of missing information make up about one-third of 

the data set, no more than 5 replicates of the model provides 

efficient estimates. 

Secondly, one analyses the m data sets with usual, complete 

data, procedures (statistical software package), saving the 

parameter estimates and standard errors from analysis of each 

data set.  

Thirdly, one would combine the results to get MI inference. 

Following what are commonly known as Rubin’s rules 

(Rubin, 1987), the two most important quantities for MI 

inference are the point estimate of the parameters of interest 

and the MI-based standard errors. Some of the important 

quantities to combine these results are described in 

Chowdhury (2014), as indicated in equations (2.1) to (2.6). 

The point estimate for each parameter is simply the arithmetic 

average of that parameter estimate (e.g., a regression 

coefficient) over the m imputed data sets.  

𝜃𝑀𝐼 = ∑
𝜃𝑘

𝑚

𝑚

𝑘=1

                                      (2.1) 

 

The within imputation variance, �̂�𝑤
2 , is the average variance 

within the imputed data sets, 

  

�̂�𝑤
2 = ∑

�̂�𝑘
2

𝑚

𝑚

𝑘=1
                                  (2.2) 

The between imputation variance, �̂�𝑏
2, is the sample variance 

of the parameter estimate over the m imputed data set 

�̂�𝑏
2 = ∑

(𝜃𝑘 − 𝜃𝑀𝐼)
2

𝑚 − 1

𝑚

𝑘=1

                     (2.3) 

The total variance, �̂�𝑀𝐼
2 , is the sum of the within and the 

between variances; 

�̂�𝑀𝐼
2 = �̂�𝑤

2 + (1 +
1

𝑚
) �̂�𝑏

2                    (2.4) 
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We need to note that �̂�𝑏
2 is the variance that is due to missing 

data. If there were no missing data, then the variance of the 

parameter over the m imputed data sets would be zero and 

�̂�𝑏
2component of variance would be zero. The MI inference 

standard error is simply the root of�̂�𝑀𝐼
2 . 

The fraction of missing information (FMI) in Rubin’s rules is 

given by; 

𝐹𝑀𝐼 =

𝑟 + 2
(𝑣𝑚 + 3)

𝑟 + 1
                   (2.5) 

 

FMI represents the amount of information that is missing 

from a parameter estimate because of the missing data, in 

other words it is the same as the amount of missing data. 

Though this value in any analysis estimated FMI usually 

differ from the hypothetical value, the formula given above 

just gives an estimate.  

The relative efficiency, RE of using the finite m imputation 

estimator, rather than using an infinite number for the fully 

efficient imputation, in units of variance, is approximately a 

function of m and 𝜆; 

𝑅𝐸 = (1 +
𝜆

𝑚
)

−1

                             (2.6) 

 

Multiple imputation has been shown to be robust to departures 

from normality assumptions and provides adequate results in 

the presence of low sample size or high rates of missing data. 

Undoubtedly, certain requirements must be met for multiple 

imputations to meet these desirable properties. First, the data 

must be missing at random (MAR) meaning that the missing 

data are dependent on the observed variables not the missing 

observations. Secondly, the selection of model used to 

generate the imputed values must be well suited with the 

subsequent analysis so that it can conserve the associations 

among variables that will be the focus of later analysis. 

Thirdly, the model used for the analysis must agree with the 

model used in the imputation (Wayman, 2003). 

The maximum likelihood method 

The principle of maximum likelihood is a fairly simple 

technique but it is not quite easy to carry out because of 

computational complexity. There are a number of ways to 

obtain maximum likelihood estimators, and one of the most 

common is called the Expectation-Maximization algorithm 

usually known as the EM algorithm. There are various 

versions of the EM algorithm (Graham, 2012). The version 

that would be discussed here is the EM algorithm for 

covariance matrices. The basic idea is simple enough, but 

the calculation is a bit complicated.  

In order to solve the EM algorithm manually, we would first 

take estimates of the variances, covariances and means, 

perhaps from listwise deletion. We would then use those 

estimates to solve for the regression coefficients, and then 

estimate missing data based on those regression coefficients. 

For example, we would use whatever data we have to estimate 

Y =bX +a, and then use X to estimate Y wherever it is missing. 

This is the estimation step or “E-step” of the algorithm. 

Having filled in missing data with these estimates, we would 

then use the complete data (including estimated values) to 

recalculate the regression coefficients. This is the 

maximization step or “M step”. Having new regression 

coefficients, we would re-estimate the missing data, calculate 

new coefficients, etc. We would continue this process until the 

estimates no longer change noticeably, at this point, it is said 

that EM has converged. Then we can say we have maximum 

likelihood estimates of the parameters, and we can use them to 

make the maximum likelihood estimates of the regression 

coefficients.  

The solution from the EM algorithm is better than we can do 

with coding for missing data, but it will still underestimate 

the standard errors of the coefficients. There are alternative 

maximum likelihood estimators that will be better than the 

ones obtained by the EM algorithm, but they assume that we 

have an underlying model (usually the multivariate normal 

distribution) for the distribution of variables with missing 

data (Azadeh, 2012). The EM algorithm assumes that data 

are multivariate normal and that missingness is MAR. The 

EM estimates of the mean vector and covariance matrix can 

then be used in multivariate analyses to obtain estimates of 

the model parameters and standard errors, to test hypotheses, 

and to score values for observations using the model 

selected. The problem with using the EM covariance 

estimates as input for subsequent analyses is that standard 

errors might still be biased because the covariance matrix is 

treated as though it came from complete data (Truxillo, 

2004).  

Allison (2012) reported that the ML is a great technique for 

handling missing data and that the most important advantage 

it has over MI is that there is no conflict between the 

imputation model and the analysis model. Also, both MI and 

ML are asymptotically efficient because they have minimum 

efficient but can attain full efficiency with infinite number of 

data sets, which is difficult to achieve. One further 

advantage ML has over the MI method is that it is not 

cumbersome to compute and it gives the same estimate each 

time it is computed but the MI gives different estimates for 

every time it is computed. Graham (2012) observed that MI 

is not a good method of imputing missing observations when 

it comes to analyses that lend themselves well to normal-

method. Shin, Davison and Long (2017), reported that the 

ML does quite well with smaller sample sizes than the MI, 

this is similar to the opinion that MI does quite well when 

the percentage of missing data is more than 20 percent 

(Graham, 2012). 

Method of data analysis 

The data collected was used to exemplify the comparisons 

between the MI method and the ML of estimating missing 

observations in a two-way factorial design. The data were 

secondary collected from the department of Animal Health 

and Production Technology, National Veterinary Institute 

Vom. The responses obtained were from an experiment 

carried out on the effect of storage length and temperature on 

crude protein content of table eggs. The data simply known as 

protein content has four missing observations from a total of 

forty-eight (48) observations. 

The data with k missing observation was analysed using a 

two-way analysis of variance technique with the model 

𝑌𝑖𝑗𝑘 = 𝜇 + 𝛼𝑗 + 𝛽𝑘 + 𝛼𝛽𝑗𝑘 + 𝜀𝑖𝑗𝑘 

Where μ is the overall mean, αj is the deviation of group j 

from the first factor to the overall mean, βk is the deviation of 

group k from the second factor to the overall mean, αβjk is the 

interaction between Factors 1 and 2, and εijk is the error term 

that is assumed to be normally distributed with mean zero and 

variance σ2. The estimates of interest are the mean squared 

error, (MSE) and the standard error (SE) of the mean of 

observations. Apart from the original data which had 4 

missing observations, other data sets with 5, 10, and 15 

randomly deleted observations were also analysed.  For the 

MI method, the analysis was carried out at m=20, 30 and 40 

imputations. The regression model with fully conditioned 

specification model was used to generate all imputed values. 

The ML analysis was also carried out using the EM algorithm 

method. The analysis of data was done with the aid of SPSS 

version 25. 

The relative efficiency of the results obtained from the 

multiple imputation and the maximum likelihood methods of 
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analysis is computed by comparing the error variance using 

the ratio;  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝐴: 𝐵) =
𝜎𝐴

2

𝜎𝐵
2 

The relative efficiency can be expressed in terms of 

percentage by multiplying by 100. If Relative Efficiency 

(A:B) is greater than 100, it implies that B is more efficient or 

precise than A. If Relative Efficiency (A:B) is less than or 

equal to 100, it implies that B is less efficient to A. 

 

Results and Discussions 

Fraction of missing information 

The FMI represented in Table 1, shows the amount of 

information missing from the parameter estimate.  The lowest 

value being at m=40 when there are 4 missing observations 

and the highest at m=20 for 15 missing observations. 

Table 1 shows the amount of missing information, the lower 

the value the better. The amount is higher at m=20 for 15 

missing observations, this indicates that when the number of 

missing observation is becoming higher the number of 

imputations should also go higher so as to be able to recover a 

considerable amount of the missing information (Yuan, 2000). 

The lowest value was at m=40 when there are 4 missing 

observations, this seems to buttress the point made by Allison 

(2012) that MI can attain full efficiency when the number of 

imputation becomes infinitely high. 

 

Table 1: Fraction of missing information over levels of 

imputations 

Number of missing observations 
Number of Imputations 

m=20 m=30 m=40 

4 0.240 0.196 0.160 

5 0.162 0.244 0.242 

10 0.202 0.254 0.260 

15 0.564 0.322 0.442 

 

 

Table 2: Efficiency of imputations 

Number of missing observations 
Number of Imputations 

m=20 m=30 m=40 

4 0.988 0.994 0.996 

5 0.992 0.992 0.994 

10 0.990 0.994 0.994 

15 0.973 0.989 0.989 

 

 

Efficiency of imputations 

Table 2 shows the efficiencies of imputation at various levels 

of imputation and number of missing observations. Most of 

the values stood at about 99%, with the smallest value being 

0.973 at m=20 for 15 missing observations, followed by m=20 

at 4 missing observation. This is indicative that the MI 

performs well when the number of imputation is high and the 

number of missing observations is not so low. The efficiency 

seems dropping generally at 15 missing observations, which 

shows that the MI begins to lose its efficiency when the 

number of missing data is getting higher and higher; Garson 

(2015) suggested its use for missing data with percentages 

between 20 and 50. In other words, the MI should not be used 

as a substitute for data collection. Even though the MI begins 

to lose its efficiency as the number of missing observation 

increases, it still has a better performance than the ML. The 

error becomes larger and larger with the ML as the number of 

missing observations increases. 

Tables 3 and 4 shows the relative efficiencies of the standard 

errors and mean squared errors respectively, for the MI to ML 

methods. It can be observed that the ML performed better than 

the MI at four (4) missing observations, except for when 

m=40. This is in agreement to the point that ML performs 

better than MI when the number of missing observations are 

very few just as reported in Shin et al. (2017). Apart from the 

already mentioned situations the MI performed better than the 

ML in other levels of missing observation.  

Table 3 shows the standard errors obtained from both the MI 

and ML methods of missing data imputations. The relative 

efficiencies of the MI:ML were also computed; they are in 

parenthesis in each cell. A value less than 100% indicates that 

the MI is more efficient than the ML, if the relative efficiency 

is greater than 100% however, this indicates that the ML is 

more efficient. 

 

Table 3: Relative efficiency of MI:ML for standard errors 

Number of 

imputations 

    Number of missing 

observations 

4 (%) 5 (%) 10 (%) 15 (%) 

m=20 
0.041  

(102.5) 

0.042  

(84.0) 

0.049 

(98.0) 

0.058  

(89.2) 

m=30 
0.041  

(102.5) 

0.041  

(82.0) 

0.050  

(100.0%) 

0.063  

(96.9) 

m=40 
0.038  

(95.0) 

0.043 

(86.0) 

0.049  

(98.0) 

0.058  

(89.2) 

ML 0.040 0.050 0.050 0.065 

 

 

Table 4: Relative efficiency of MI:ML for mean squared 

errors 

Number of 

imputations 

    Number of missing 

observations 

4 (%) 5 (%) 10 (%) 15 (%) 

m=20 
0.061  

(102.5) 

0.063  

(53.4) 

0.085 

(69.7) 

0.117  

(57.1) 

m=30 
0.073  

(102.5) 

0.058  

(49.2) 

0.083  

(68.0) 

0.118  

(57.6) 

m=40 
0.103  

(177.6) 

0.060 

(50.8) 

0.078  

(63.9) 

0.118  

(57.6) 

ML 0.058 0.118 0.122 0.205 

 

Table 4 shows the mean squared errors obtained from both the 

MI and ML methods of missing data imputations. The relative 

efficiencies of the MI:ML were also computed; they are in 

parenthesis in each cell. A values less than 100% indicates 

that the MI is more efficient than the ML, if the relative 

efficiency is greater than 100% however, this indicates that 

the ML is more efficient. 

In summary, the result is indicative that the ML method has a 

lower standard error and MSE for four (4) missing 

observations except when the number of imputation was 

m=40 for standard error. This shows that ML is a more 

efficient technique to use than the MI when it comes to 

imputation of missing values with fewer missing observations 

say, less than 10%. But precision could be achieved with the 

MI method by increasing the number of imputations to m=40 

or more. However, it has been observed that the MI method is 

preferable to the ML method as the number of missing 

observations becomes large, because it produces a lower 

standard error of the mean and also a lower MSE. 

 

Conclusions 

From the foregoing, both the ML and MI method of imputing 

missing observations in a RCBD can be adopted, but the ML 

is more efficient if the number of missing observations are 

few. The MI can only perform equally efficiently for few 

missing observations only if the number of imputation is 

excessively increased, but this is tedious. The MI method 

performs excellently better than the ML method when the 

number of missing observations are much more, although it 

should not be used as a substitute to complete data collection 

http://www.ftstjournal.com/


Determination of Suitable Imputation Method for RCBD with Replication 

FUW Trends in Science & Technology Journal, www.ftstjournal.com 

e-ISSN: 24085162; p-ISSN: 20485170; April, 2020: Vol. 5 No. 1 pp. 062 – 066  

 
066 

because it loses its power as the number of missing 

observations increases say beyond thirty percent of the total 

expected observations. 

Based on the result obtained in this work, it is recommended 

that the Maximum Likelihood method be adopted for 

imputation of missing observations in a two-way randomised 

complete block design with more than one observation per 

cell when missing items in the data are few, but when the 

missing observation are many, say 10% and above, the 

multiple imputation method should be adopted. 
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